
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3949765

Subspace clustering for hierarchical fuzzy system construction

Conference Paper · February 2002

DOI: 10.1109/FUZZ.2002.1005043 · Source: IEEE Xplore

CITATIONS

0
READS

31

2 authors, including:

Some of the authors of this publication are also working on these related projects:

special applications View project

testing View project

Tom Gedeon

Australian National University

430 PUBLICATIONS 5,943 CITATIONS

SEE PROFILE

All content following this page was uploaded by Tom Gedeon on 01 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/3949765_Subspace_clustering_for_hierarchical_fuzzy_system_construction?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3949765_Subspace_clustering_for_hierarchical_fuzzy_system_construction?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/special-applications?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/testing-18?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom_Gedeon?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom_Gedeon?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Australian-National-University?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom_Gedeon?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom_Gedeon?enrichId=rgreq-b9691cda8090d059633b05030a55e8c5-XXX&enrichSource=Y292ZXJQYWdlOzM5NDk3NjU7QVM6MTAyNTY3NzgyNjQ5ODYxQDE0MDE0NjU0NzM0NTg%3D&el=1_x_10&_esc=publicationCoverPdf

Subspace Clustering For Hierarchical Fuzzy
System Construction

Chong A., Gedeon T.D.
School of Information Technology

Murdoch University
South Street, Murdoch
6150 Western Australia

 Abstract – Hierarchical fuzzy systems are proposed to
deal with the rule explosion problem of traditional fuzzy
systems. The inference operations of the fuzzy systems
are well established. The next step is to tackle the
problem of finding subspaces for automated hierarchical
fuzzy system construction. In this paper, we propose a
clustering technique designed specifically for this
purpose. It is both theoretically and experimentally
confirmed that the algorithm has reasonable accuracy
and scalability.

I. INTRODUCTION

 Fuzzy systems suffer from rule explosion. To model a
system with k variables and maximum T fuzzy terms in each
dimension, the number of necessary rules is Tk, which will be
very large if k is not very small. Because of this, fuzzy
systems are limited to handling only very few variables.

Hierarchical fuzzy systems are designed to tackle this
problem [1]. The basic idea is closely related to the concept
of a subspace (see section 3 for details). The inference
operations of hierarchical fuzzy systems have been
established in [1]. Hence, emphasis should now be placed on
the automated construction of such hierarchical rule base
from data. Clustering is one of the most important
techniques for fuzzy system generation from sample input-
output data.

Given a set of data, clustering technique partitions the data
into several groups such that the degree of association is
strong within one group and weak for data in different
groups. Emerging hierarchical fuzzy rule extraction places
some special requirements on the clustering technique.

II. CLUSTERING REQUIREMENTS

 The clustering requirements specific for hierarchical fuzzy
rule extraction are presented as follows.

1. Capable of handling high-dimensional data: The
ultimate goal of a hierarchical fuzzy system is to break
the limitation of fuzzy systems in the maximum number
of variables that is manageable. If the goal is achieved,
fuzzy systems may be used to handle data with large
number of dimensions. Hence, the clustering technique
designed for the construction of hierarchical fuzzy
systems must be able to handle high dimensional data.

2. Interpretability of clusters produced: One of the
advantages of fuzzy systems that distinguish it from
neural networks is its ability to explain its inference
results. Once a conclusion is reached, the user can
observe the rules fired to gain insights on how and why
the conclusion is reached. The interpretability of a
fuzzy system relates directly to the fuzzy rules used.
The clustering technique used to generate fuzzy rules
should be designed to produce clusters that constitute to
easy-to-interpret fuzzy rules.

3. No prior knowledge about data required: Often,
clustering techniques requires certain input parameters
from users. These techniques are usable in situation
where the users possess prior information about the data
being studied. One of the important goals of generic
fuzzy systems modeling is to help users model a problem
domain without requiring any prior knowledge about the
domain. In this case, the clustering technique should
not require prior knowledge about the data being studied
from the user.

III. SUBSPACE CLUSTERING

Let

be the k dimensional data space, where I = {1, 2, …, k } is
the set of dimension indexes. Then

is a subspace of the full space, where I0 ⊂ I .

1.3eqnxX i
Ii∈

Χ=

2.3
0

eqnxS iIi∈
Χ=

0-7803-7280-8/02/$10.00 ©2002 IEEE

A subspace cluster is defined as a cluster that is embedded in
a certain subspace. Figure 3.1 shows two one-dimensional
subspace clusters embedded in dimension X1 and X2
respectively. Cluster C1 can be identified by observing its
projection on X1. The data points in cluster C1 are spread
uniformly across X2.

The existence of subspace clusters in data introduces new
problems for distance function based clustering algorithms.
Consider a set of data with dimensions 1…k. If there exists
a subspace cluster embedded in dimension 1…k0 where k0 is
significantly smaller than k, then the data points in the
cluster are distributed uniformly in dimension k0…k. In this
case, it becomes difficult for distance functions that use all
dimensions of the data to reflect the associations among data
points within the cluster.

According to our review of the clustering literature, CLIQUE
[2] is one of the first clustering techniques designed
specifically to find subspace clusters. ENCLUST [3] extends
the idea of CLIQUE to exploit the concept of entropy. In
this study, we modified CLIQUE to reduce the algorithm’s
computational complexity.

IV. CLIQUE

In this section, the algorithm of CLIQUE [2] is discussed.
The basic idea of CLIQUE is as follows. The multi-
dimensional data space is first partitioned into non-
overlapping hyperboxes. This is done by partitioning every
dimension into ε number of equal-length intervals where ε is
an input parameter. Each hyperbox is the intersection of one
interval from each dimension. A data point is said to be
contained in a hyperbox if its projections on all dimensions
are within the intervals that comprise the hyperbox. A
hyperbox is dense if the number of points in it exceeds a
threshold t, which is another user input. Similarly, a unit is
defined to be the intersection of interval(s) from one or more
dimensions.

Once all the dense units are found, clusters can be formed by
connecting neighboring units. The core of the clustering
technique lies in the algorithm to identify dense units. The
algorithm is based on the Apriori algorithm [4] used
extensively in data mining. The algorithm proceeds in
multiple passes. In the first pass, all the one-dimensional
units are examined and the dense units becomes candidates
for the next pass. In general, having determined (k-1)
dimensional dense units, the candidate k-dimensional units
are determined using the candidate generation procedure
given below.

 Ck = set of candidates at pass k
 u.ai = ith dimension of unit u
 u.[li,hi) = interval in the ith dimension
 Dk-1 = set of all (k-1) dimensional dense units

 insert into Ck

 select u1.[l1,h1), u1.[l2,h2), …, u1.[lk-1,hk-1), u2.[lk-1,hk-1)
 from Dk-1 u1 Dk-1 u2

 where u1.a1 = u2.a1, u1.l1 = u2.l1, u1.h1 = u2.h1,
 u1.a2 = u2.a2, u1.l2 = u2.l2, u1.h2 = u2.h2, …,
 u1.ak-2 = u2.a k-2, u1.l k-2 = u2.l k-2, u1.h k-2 = u2.h k-2,
 u1.a k-1 = u2.a k-1, u1.l k-1 = u2.l k-1, u1.h k-1 = u2.h k-1

The relation < represents lexicographic ordering on
dimensions. Upon candidate generation, dense units that
have a projection in (k-1)-dimensions that is not included in
Ck-1 are discarded. The resulting candidates then go through
the Minimal Description Length (MDL-based) pruning
stage.

Given the subspaces s1, s2, …, sn, the MDL-based technique
first groups together the dense units that lie in the same
subspace. Then for each subspace, the coverage is:

Where count(ui) is the number of points that is contained in
ui. Subspaces with small coverage are pruned.

The algorithm terminates when no more candidates are left
for a particular pass. Using a bottom-up approach and
discarding non-dense units in the early passes, the algorithm
is able to prune a significant volume of the error space. The
MDL-based pruning method further discards candidates that
are less likely to be clusters, increasing the speed of the
algorithm. We remark that the MDL-based pruning method
can be error prone. Figure 4.1 shows situation where MDL-
based pruning can be ineffective. In the figure, the bolded
units are more likely to be retained than those real cluster
units due to their high coverage.

X
1

X
2

Cluster C2

Cluster C1

Figure 3.1 Subspace clusters C1 and C2 embedded in
dimensions X1 and X2 respectively

1.4)()(eqnucountsconverage
ji su ij ∑ ∈

=

0-7803-7280-8/02/$10.00 ©2002 IEEE

Even with the pruning strategies introduced in [2], the
algorithm still suffers from high computational complexity.
This is explained as follows. If a dense unit exists in k-
dimensions, then all of its projections in a subset of k-
dimensions is also dense. The total number of combinations
to be explored by the algorithm to identify the dense unit is
calculated as

2.4
)!(

!

1

eqn
ikk

k

i

k
where

i

kk

i −
=















∑
=

The overall complexity of the algorithm is thus, O(ck) for
some constant c. Therefore, improvement on the algorithm
to reduce the computational complexity is necessary. In the
next section, we present our modified algorithm with
reduced complexity.

V. MODIFIED CLIQUE

One of the goals of the proposed clustering technique is to
produce clusters for the construction of hierarchical fuzzy
system. Since fuzzy rules operate on the projections of the
multi-dimensional clusters, convex clusters are desired for
the fuzzy system generation. Hence, one of the main
differences between our algorithm and the original CLIQUE
is that our algorithm is designed to approximate convex
clusters.

The basic idea of CLIQUE is retained in our modified
algorithm. The algorithm starts by partitioning every
dimension into ε (input parameter) number of equal-length
intervals. A unit is considered dense if the number of data
points contained in the unit exceeds the threshold t (input
parameter). The 4-step algorithm as well as the pseudo code
for the important procedures involved is presented.
1. Find one of the dense units, u, that exceeds the threshold

t.
2. Approximate convex cluster, C, by expanding the dense

unit u in each of the dimensions that the dense unit is
embedded in.

3. Remove all data points that are contained in the cluster
C approximated.

4. Repeat steps 1 – 3 until no dense unit can be found.

PROCEDURE find_dense_unit

 Let Ui be the set of one-dimensional units in dimension i
 Let denseunit = []
 for i = 1 to k
 for each unit u ∈ Ui

 utemp = denseunit x u
 if utemp is dense
 denseunit = utemp
 break
 end if
 end for
 end for

For the convenience of discussion, we define [] as the zero-
dimensional (empty) subspace where [] x Xi = Xi. The
procedure scans through each of the dimensions to find one
of the dense units in the data.

PROCEDURE approximate_convex_cluster(u)

 Let D be the set of dimension indexes of u
 for each i in D
 Let clusterset = {}
 expand_along(u,i)

 Let ul = left most element of clusterset along dimension i
 Let ur = right most element of clusterset along

dimension i
 u.l = ul.l
 u.h = ur.h
 end for

Given a dense unit, this procedure expands the unit along all
the dimensions that the unit is embedded in. The procedure
results in a hyper-rectangular cluster.

PROCEDURE expand_along(u,i)

 global clusterset
 add u to clusterset

 Let ur = right neighboring unit of u along dimension i
 if ur is dense
 expand_along(ur,i)
 end if

 Let ul = left neighboring unit of u along dimension i
 if ul is dense
 expand_along(ul,i)
 end if

X1

X2
Bolded units have high
coverage in MDL-based
pruning

Figure 4.1 Coverage of units

0-7803-7280-8/02/$10.00 ©2002 IEEE

This procedure is used by approximate_convex_cluster to
expand a dense unit along a certain dimension. Using the
modified algorithm, the computational complexity is greatly
reduced. To find a dense unit that exists in k-dimensions, the
procedure find_dense_unit performs a single pass scan
through each dimension of the data, giving the complexity
O(k). To approximate a convex cluster using the k-
dimensional dense unit, the procedure
approximate_convex_cluster examines each of the k
dimensions O(k) by calling the procedure expand_along.
The procedure expand_along examines both the right and
left neighboring units. In the worse case, all ε number of
units are examined O(ε). The algorithm terminates when all
clusters are found (by then, all data points would have been
removed). Thus the overall complexity is:

O(c x (k + kε)) = O(ckε)

Since the complexity of the algorithm is linear, it is
computational feasible to cluster data with very large number
of dimensions.

VI. EXPERIMENTAL RESULTS

In this section, the performance of the proposed algorithm is
evaluated. The overall goal of the experiments is to evaluate
the efficiency and accuracy of the algorithm. In terms of
efficiency, the experiments aim to verify the scalability of the
algorithms in:
1. The dimensionality of the data space
2. The dimensionality of clusters
3. Number of data points

The synthetic data generator from [5] is used to produce the
data for the experiments. Figure 6.1 shows a sample input to
the data generator to generate two-dimensional data. In the
figure, clusters 2 and 3 are subspace clusters embedded in
dimensions X2 and X1 respectively. A total of 3300 data
points are generated in which 10% of the data is noise.

Cluster X1 X2 Number of Points
1 [0.2, 0.3] [0.2, 0.3) 10000
2 [0.0, 1.0] [0.5, 0.6) 10000
3 [0.8, 0.9) [0.0, 1.0) 10000
Noise [0.0, 1.0) [0.0, 1.0) 3000
Figure 6.1 Sample input to data generator

The clusters generated are hyper-rectangles in shape and
data points are uniformly distributed within the cluster. The
rest of this section discusses the results of the experiments.
Figure 6.2b, 6.3b, and 6.4b are extracted from [2] to allow
for comparisons.

Figure 6.2a Scalability with the number of data

Figure 6.2b CLIQUE scalability with the number of data

Figure 6.2a shows the scalability of the algorithm as the
number of data increases. The data has five dimensions.
The threshold t is chosen as 0.3. There are three clusters
embedded in the full space. The number of data points
increases from 1650 to 26400. From the figure, our
algorithm scales linearly with the increase of the number of
data. It is shown in figure 6.2b that CLIQUE performs
equally well in terms of its scalability.

0 0.5 1 1 .5 2 2 .5 3

x 1 0
4

0

5

10

15

20

25

30

35

40

45

50

Number of data

Time (milisec)

100

20000

0

500
Number of data

Time (milisec)

0-7803-7280-8/02/$10.00 ©2002 IEEE

Figure 6.3a Scalability with the data space dimensionality

Figure 6.3b CLIQUE scalability with the data space
dimensionality

Figure 6.3a shows the scalability of the algorithm as the
number of dimensions of the data increases. There are three
five dimensional subspace clusters. The threshold t = 0.3 is
used. There is 26400 data points. The number of
dimensions of the data space increases from 5 to 50
dimensions. Again, our algorithm scales linearly with the
increase of the data space dimensionality. Figure 6.3b shows
a quadratic behavior for CLIQUE.

Figure 6.4a shows the scalability of the algorithm as the
highest dimensionality of the hidden clusters increases. To
keep the experiment simple, there is only one cluster in the
data. The number of dimensions increases from 4 to 10
dimensions. Our algorithm scales linearly with the increase
of cluster dimensionality. The performance of CLIQUE is
shown in figure 6.4b.

Figure 6.4a Scalability with the cluster dimensionality

Figure 6.4b CLIQUE scalability with the cluster
dimensionality

In all the above experiments, our algorithm is able to recover
the original clusters in the data. Apart from that, it is easily
observed that the algorithm scales linearly with the increase
of the dimensionality of the data space, the dimensionality of
clusters as well as the number of data. Overall, the
experiments show that our algorithm outperforms CLIQUE
significantly in every case.

3

12000

0

10Number of data

Time (milisec)

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of data

Time (milisec)

10

20000

0

100
Number of data

Time (milisec)

4 5 6 7 8 9 10
5

10

15

20

25

30

35

Number of data

Time (milisec)

0-7803-7280-8/02/$10.00 ©2002 IEEE

VII. CONCLUSION

In this paper, we have proposed a subspace-clustering
algorithm. The algorithm is designed to find convex
subspace cluster that can be used for the construction of
hierarchical fuzzy systems. Our algorithm is an
improvement over CLIQUE, one of the first clustering
technique designed to find subspace cluster. It is both
theoretically and experimentally confirmed that the
complexity of our algorithm is significantly reduced.

Since the computational complexity of our algorithm is low,
it can be used to deal with high dimensional data. The
clustering technique brings us one step nearer to the
construction of hierarchical fuzzy systems. In our
subsequent work, we will further extend the proposed
algorithm to reduce the necessary user input parameters.

REFERENCES
[1] Koczy, L.T. Approximative inference in hierarchical
structured rule bases. in Fift IFSA World Congress. 1993.
Seoul: International Fuzzy Systems Association.

[2] Agrawal, R., Gehrke, J., Gunopulon, D., and Raghawan,
P. Automatic subspace clustering of high dimensional data
for data mining applications. in Proceedings of the ACM
SIGMOD conference on Management of Data. 1998.
Canada.

[3] Cheng, C.H., Fu, A.W., and Zhang, Y. Entropy-based
Subspace Clustering for Mining Numerical Data. in
Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-99). 1999.
San Diego.

[4] Agrawal, R. and Srikant, R. Fast algorithms for mining
association rules. in Proceedings of the 20th VLDB
Conference. 1994.

[5] Zait, M. and Messatfa, H., A Comparative Study of
Clustering Methods. Future Generation Computer Systems,
1997. 13: p. 149-159.

0-7803-7280-8/02/$10.00 ©2002 IEEE

View publication statsView publication stats

https://www.researchgate.net/publication/3949765

	FUZZ Main Menu
	FUZZ Table of Contents
	FUZZ Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
